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Received 2 March 1988, in final form 7 June 1988 

Abstract. Symmetrised Kronecker squares of irreducible representations of line groups are 
decomposed into irreducible constituents. Selection rules for linear vibronic-coupling 
matrix elements are derived. They provide a systematic method of identification of the 
Peierls modes in conducting polymers and quasi-one-dimensional metals. 

1. Introduction 

Quasi-one-dimensional (QID) metals have attracted a lot of interest in the last decade 
(Miller 1982, Kuzmany er al 1985, Monceau 1985, Kamimura 1985, Skotheim 1986). 
They frequently show some remarkable topological effects of reduced dimensionality, 
the best known of which is the Peierls instability (Peierls 1955). The total adiabatic 
energy of a monatomic periodic chain with a partially filled conduction band contains 
a term proportional to Q2 In Q, where Q is a small longitudinal distortion of wavelength 
A = r/ k,; here k, is the wavevector corresponding to the Fermi level E,. Consequently, 
the chain distorts along Q. 

The actual QiD crystals and polymers may contain many atoms in the unit cell; 
nevertheless, the above Peierls theorem can be generalised (BoioviC 1985a) to such 
complex chains. In most real cases only one or two out of many possible normal 
modes of such a system turn out to be ‘Peierls active’, i.e. of such a symmetry that the 
matrix element of linear electron-phonon coupling, (el Q * (8 V/dQ)o(e’), does not 
vanish identically. (Here V denotes the effective one-electron potential, and I e ) ,  I e’) 
are the degenerate one-electron eigenstates at EF.) 

A systematic method of determining all such linearly vibronically allowed modes 
is as follows: (i) identify the (grey) line group L of the polymer under study, (ii) find 
the irreducible (c0)representation D of the states le), le‘), . . . , at EF, (iii) construct the 
symmetrised Kronecker square [D’], (iv) decompose [D’] into its irreducible com- 
ponents D,, i = 1,2, .  . . , r, and (v) identify the corresponding normal modes (e.g. by 
constructing the symmetry-adapted bases of D,, cf BoioviC and Delhalle (1984) or 
Koch and Seelig (1987)). 

Vibronic instabilities in molecules with electronic degeneracies had been predicted 
long ago (Jahn and Teller 1937) by applying the above algorithm to all the point 
groups; the result was the well known Jahn-Teller theorem. Several space groups had 
also been explored along these lines (Birman 1959). Despite the extensive experimental 
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and theoretical research on vibronic instabilities in Q i D  and Q ~ D  metals, no comprehen- 
sive group-theoretical treatment has appeared yet. (A few representative cases were 
analysed in some detail in BoioviC (1984).) In this paper, we report the selection rules 
for linear vibronic coupling for all the symmorphic line groups (Ln, Lnm, Lnmm, 
Ln/m,  Ln2, Ln22, Lii, L ( G ) ,  Liim, L(%)2m, Ln lmmm) .  They enable direct iden- 
tification of the Peierls modes in every Q i D  eclipsed-stack molecular conductor, such 
as TTF-TCNQ, Ni-phtalocyanine or the platinum salts such as PtC14PtN4. The same 
selection rules also govern the two-photon infrared absorption processes involving the 
overtones of a degenerate normal mode (Cracknell 1975). 

The results are presented in tables 1-7 below. Three independent methods (the 
group character formula, the symmetry-adapted basis construction and the direct 
summation) were utilised to derive and check the entries. The details of the method 
and the proofs are omitted for brevity; instead, a brief reminder of the line group 
notation is added for self-containedness. 

2. Notation 

A one-dimensional irreducible representation of a line group L is denoted by A if it 
is even with respect to the vertical mirror reflection (or if that symmetry element is 
absent from L) and by B if it is odd. Two- and four-dimensional representations are 
denoted by E and G, respectively. Other relevant quantum numbers include the 
quasimomentum hk and the quasi-angular momentum hm (BoioviC et a1 1978, BoioviC 
and VujiEiC 1981). Since the time-reversal symmetry has to be included we have to 
use the irreducible corepresentations or, equivalently, the unitary-antiunitary rep- 
resentations (Herbut et a1 1980) or the physical representations (Landau and Lifshitz 
1977). These are denoted below by the same (short) symbol as its subduced ordinary 
irreducible representation, if the latter is real; in the opposite case (Frobenius-Schur 
type (b) and (c) representations, BoioviC and BoioviE (1981)) a pair of such symbols, 
denoting the two complex-conjugate ordinary representations, is enclosed in a single 
bracket. To simplify the notation, we take h = 1 and the translation period a = 1, SO that 

1 , 2 , ,  . . , (n  -2)/2 
. . . , ( n  - 1)/2 

for n even 
for n odd 

O s k < . r r  

where n is the order of the principal rotation axis. 
In table 1 we reproduce the characters of all the representations of the symmorphic 

line groups isogonal to Dnh, n = 1 , 2 , .  . . . Since all the other line groups considered 
here are their subgroups, this is sufficient to define their representations, too. Matrices 
of all the representations of line groups were given explicitly by BoioviC et a1 (1978) 
and BoioviC and VujiEiC (1981). 

3. Irreducible components of the symmetrised Kronecker squares of corepresentations 
of all symmorphic line groups 

Symmetrised Kronecker squares (SKS) of real irreps of all the symmorphic line groups 
are presented in tables 2-8. Further abbreviations, utilised in these tables, are 

p = 2 k  t = 2~ -2k  (2) 

w = 2 m  v = 2 m - n .  (3) 
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Table 1. The characters of the irreducible representations of the line groups L ( 5 ) 2 m  
( n  = 1 , 3 , .  . .) and Lnlmmm ( n  = 2 , 4 , .  . .). Here s = 0, 1 , .  . . , n - 1 and t = 0, *l ,  . . . ; C, 
denotes the rotation around the z axis by cy = 2 ~ / n ;  uv and uh denote the reflections in 
the xz and xy planes, respectively. ( C i  I t )  denotes the rotation C;; followed by the 
translation for tae,, where a is the translation period. 

1 
1 
2 cos mscy 
2 cos kt 
2 cos kt 
4 ccls kt cos mscy 
(-1): 
(-1)l 
(-1)'2 cos mscy 

(-1Y 
(-1)"2 COS kt 
(-1)'2 COS kt 
( - l )*+'  
( -  1 

1 
-1  

0 
2 cos kt 

0 
-2 COS kt 

(-Ill 
-(-l)I 

( - I ) *  
- ( - l ) S  

(-1)"2 COS kt 
-(-1)'2 COS kt 

0 

(--l)S+! 
- ( - I )$+$ 

A dagger ( t)  indicates that the result is valid for n = 2 q  = 2 , 4 , .  . . , only; two daggers 
( t t )  mean 'for n = 2 q  = 4,8 , .  . . , only'. 

Since the totally symmetric (identical) representation appears in every symmetrised 
Kronecker square [ D'], it is subtracted from the result of the decomposition of [ D 2 ]  
to reduce the tables. 

Figure 1. The model polymer of L4/mmm line-group symmetry: a periodic array of 
equidistant square planar molecules in the eclipsed position. 
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Table 2. Symmetrised Kronecker squares (SKS) of real ireps of the line groups Ln 
( n = 1 , 2 ,  ...). 

k = n/2 

k >  n/2 

k = n / 2  

k >  n / 2  

m < n / 4  
m = n / 4 t t  
m > n / 4  

m < n / 4  
m = n / 4 t t  
m > n / 4  
m < n / 4  
m = n / 4 t t  
m > n / 4  
m < n / 4  
m = n / 4 t t  
m >  n / 4  

m < n / 4  
m = n / 4 t t  
m > n / 4  
m < n / 4  
m = n / 4 t t  
m > n / 4  
m < n / 4  
m = n / 4 t +  
m > n / 4  

m > n / 4  
m = n / 4 +  
m >  n / 4  

4. Examples 

Let us now illustrate how these tables can be used to analyse vibronic instabilities in 
Q i D  metals. We shall consider an eclipsed stack of square planar molecules shown in 
figure 1. This model is rich enough to include some of the most complex cases 
possible-such as ten-dimensional [ 0'1 representations-and yet simple enough to 
make the analysis transparent. Furthermore, a detailed account of the underlying 
physics-complementary to the present one since it omitted the group-theoretical 
aspects which are our principal interest here-is already available (BoioviC 1984). 

The line group of the model polymer shown in figure 1 is L4/ mmm. The correspond- 
ing vibronic-coupling selection rules are given in table 8. To be specific, let us further 
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Table3. ~~~ofrealirepsofthelinegroupsLnm (n = 1,3,. . . ) andLnmm(n = 2 q = 2 , 4 , .  . .). 

k < r / 2  
k = 1r /2  
k >  7712 

k < r / 2  

k = 1r /2  

k >  5712 

k <  r / 2  
k = 1r /2  
k > 1 r f 2  

k < 7712 
k = 7712 
k >  1r /2  

m < n / 4  
m = n f 4 t t  
m > n / 4  

m < n / 4  
m = n / 4 t t  

m > n / 4  
m < n / 4  
m = n / 4 f t  
m > n / 4  
m < n / 4  
m = n f 4 f t  

m > n / 4  

m < n/4 
m = n / 4 t t  
m > n / 4  

assume that each atom contributes one atomic orbital of the 1 = 0 type (i.e. s, p ,  d,, 
etc), and let t ,  and t2 denote the intra- and inter-molecular transfer integrals (see figure 
1). Then the tight-binding electron energy bands are given by 

E(,A,)  = 2 t ,  + 2 t 2  cos ka 

E ( k E 2 ) =  -2 t l+2t2  COS ka. 

These bands are shown in figure 2 for t ,  < 0, t2  < 0 and I tZ/ > 21t,l, together with the 
corresponding one-electron states. Note that the middle E ,  band is twofold degenerate 
throughout the Brillouin zone. 

Case 1 .  If each molecule contributes one electron, the lowest (A,)  band is half filled. 
The Fermi-level states transform according to D = (x ,2AO)  + (x ,2Ao)  = (T,2EA0). The 
matrix element (e'lQ * ( d v / d Q ) , J e )  is non-zero only if [ D 2 ]  = [,,,EA:] contains the 
representation D, of that particular phonon Q. From table 8, entry (,EA,), case 
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Table 4. SKS of real ireps of the line groups L n / m  ( n  = 1 , 2 , .  . .). Here w = 2m, v = 2 m  - n, 
p = 2 k a n d  t = 2 ~ - 2 k .  

k < a / 2  
k = x / 2  
k >  x / 2  

k < 7712 

k = x / 2  

k >  x / 2  

k <  7712 
k = x / 2  
k > a / 2  

m = n / 4 ' i t  
m > n / 4  

m < n/4  
m = n j 4 t t  
m > n / 4  
m < n / 4  

m = n / 4 W  
m> n / 4  

m < n / 4  
m = n / 4 f f  
m > n / 4  

k 
Figure 2. The tight-binding one-electron band structure of the polymer in figure 1. 
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Table 5. SKS for real ireps of the line groups Ln2 ( n  = 1 , 3 , .  . .) and Ln22 ( n  = 2,4,. , .). 
Here w = 2 m ,  v = 2 m - n , p = 2 k  and t = 2 7 r - 2 k .  

D [D21 - (04.t) 

k = n/2, we find that 

(Here we have added the identity representation (&,+), which appears in every [D'] . )  
The next step is to construct the vibration modes which transform according to ( 
and (A-) respectively. This can be done by utilising the standard methods for 
construction of symmetry-adapted bases (see Boiovi6 (1984) and references therein); 
the results are shown in figure 3. Hence, in this case, there are two competing 
instabilities, one of which, (,A+), is longitudinal and displacive, while the other, 
(A+), is transverse and distortive. The first of these two types of vibronically induced 
transitions is most frequent in organic molecular stacks, while the second is found in 
many transition-metal chalcogenides. 

Case 2. If each atom contributes one electron, the middle ( E , )  band will be half filled. 
The Fermi-level states belong to 

( 4 2 E l )  + (-4%) = ( d 2 W  

From table 8, entry (kGm), case k = n/2, m = n/4 = 1, and noting that q = n / 2  = 2 ,  we 
find that 

[ , / 2 G ? l  = (A*+) + ( $ 2 + )  + ( A 2 - )  + (J-) + (Ao+) 
+(A-) + ( o A 2 + )  + (o&+) + (oBo-)+ (o&+)* 

Out of these ten representations one, (oA,,+), is trivial and for two others, and 
( J2- ) ,  there are no corresponding phonons. The modes of (,&+) and (,A+) symmetry 
were already given in figure 3; the remaining five modes are shown in figure 4. 

In an analogous way, all vibronically active modes can be determined for any given 
polymer provided its spatial and electronic structures are known. 
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Table 6.  SKS of real ireps of the line groups LA ( n  = 1 , 3 ,  . . .) and L ( z ) ,  ( n  = 2,4,  . . .). 
For D = (oAo,) and D = (,A,,), [D21 = (oAo+). 

k <  ~ / 2  m < n / 4  
m = n / 4 i f  
m > n / 4  
m < n / 4  k = 7 1 2  

m = n / 4 t +  

m >  n J 4  

k >  ~ / 2  m < n / 4  
m = n / 4 i f  
m > n / 4  

5. Conclusions and discussions 

A detailed inspection of tables 2-8 reveals several interesting facts. First, the quasi- 
momentum, the quasi-angular momentum and the well defined parities with respect 
to vertical or horizontal mirror planes, or the dihedral axes, are all conserved in the 
scattering processes studied here. Indeed, these are good quantum numbers, which 
can be conveniently used to identify and label the corresponding linearly vibronically 
active modes. (Some concrete physical examples have been worked out in Boiovii: 
(1984, 1985a, 1986).) 

Second, not all the Clebsh-Gordan (or frequency) coefficients are one (or zero); 
for several four-dimensional representations [ 0'1 contains some irreducible com- 
ponents twice. One can use the Wigner-Eckart theorem in these cases to obtain some 
further selection rules. 
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Table 7. SKS of real ireps of the line groups Lfim ( n  = 1,3,. . .) and L(%)2m ( n  = 2 , 4 , .  . .). 

k = n / 2  

k > n / 2  

k > r r / 2  

m < n / 4  
m = n / 4 t t  
m > n / 4  

m < n/4 
m = n / 4 t t  
m > n / 4  
m < n / 4  
m = n / 4 t t  
m >  n / 4  
m < n / 4  
m = n / 4 t t  
m z  n / 4  

m < 1114 
m = n / 4 t t  
m > n / 4  

( d o + )  (nA,. ) 

Figure 3. The vibronically active modes of the polymer in figure 1, in the case when the 
(Ao)  band is half filled. 
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Table 8. SKS for real ireps of the line groups L(%)2m ( n  = 1 ,3 , .  .) and L n j m m m  ( n  = 
2,4, . . .). 

D [D21 - ( o h + )  

k = 5-12 

k >  5-12 

(&A,)? k c 5 - 1 2  
k =  5 - j 2  
k >  5-12 

( ,€€? , )I  k < 5-12 
k = 5-12 
k >  77j2 

m < n j 4  
m = n j 4 t t  
m > n l 4  

m < n j 4  
m = n / 4 t I  
m > n j 4  
m c n j 4  
m = n f 4 t t  

m > n / 4  
m < n / 4  
m = n j 4 t t  
m >  n f 4  

m < n / 4  
m = n / 4 t t  
m > n / 4  

Third, again in the case of a four-dimensional starting representation 0, some of 
the irreducible components of [0*] frequently happen to be four dimensional them- 
selves. In more physical terms, this means that for a Q I D  molecular metal with the 
conduction band twofold degenerate throughout the Brillouin zone-which indeed is 
the case with some molybdenum oxides and some transition-metal tetrachalcogenides 
(Miller 1982, Kamimura 1985, Monceau 1985)-the Peierls mode can be fourfold 
degenerate itself. A four-dimensional order parameter can generate physics quite 
different from that of the usual simple 'Peierls' model, e.g. two Goldstone modes may 
emerge (BoioviC 1985b). 

Finally, to complete the task of proving the polymer (or line-group) analogue of 
the Jahn-Teller theorem, only one further step is needed-to construct the vibrational 
symmetry-adapted bases for all the graphs of the line groups (in analogy with BoioviC 
and Delhalle (1984); see also Koch and Seelig (1987)) and to verify that indeed in 
each case at least one of the vibronically allowed modes is involved. This, however, 
is a lengthy task and goes beyond the scope of the present paper. 
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Figure 4. Additional vibronically active modes of the polymer in figure I ,  in the case when 
the ( E , )  band is half filled. 
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